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Abstract
We show that the complex projections of time-dependent η-quasianti-Hermitian
quaternionic Hamiltonian dynamics are complex stochastic dynamics in
the space of complex quasi-Hermitian density matrices if and only if a
quasistationarity condition is fulfilled, i.e. if and only if η is an Hermitian
positive time-independent complex operator. An example is also discussed.

PACS numbers: 03.65.Yz, 03.65.Ca, 03.65.Fd

1. Introduction

Studies on non-HermitianPT -symmetric (or, better, pseudo-Hermitian) Hamiltonians [1] have
proven that it is possible to formulate a consistent quantum theory based on such non-Hermitian
Hamiltonians [2] at least whenever diagonalizable time-independent Hamiltonians having a
real spectrum are taken into account. It was further shown that if the above hypotheses hold,
complex quasi-Hermitian systems can be described as open systems, and a master equation
was derived [3], proving that the evolution of such systems obeys a one-parameter semigroup
law.

Moreover, the theory of open quantum systems can be obtained, in many relevant physical
situations, as the complex projection of quaternionic closed quantum systems. (More generally,
various hints about the connection between complex and quaternionic maps were recently
obtained [4–8].) In particular, it was shown that the complex projection of η-quasianti-
Hermitian quaternionic time-independent Hamiltonian dynamics are ruled by one-parameter
semigroups of maps in the space of complex quasi-Hermitian density matrices if and only if
η is an Hermitian positive complex operator [9, 10].

In this paper, we will go more inside into this subject, by considering time-dependent
Hamiltonians (we limit ourselves to consider here only the finite-dimensional case). Such a
problem was recently investigated [11] in the complex case, and a necessary and sufficient
condition was derived for the unitarity of time evolution. We intend here to exploit an
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analogous method in the quaternionic case, on one hand; on the other hand, we will show
that complex stochastic maps (in the sense by Sudarshan et al [12]) can be obtained by the
complex projection of time-dependent η-quasistationary quaternionic Hamiltonians.

This paper is organized as follows. In section 2 we first recall some previous results on
quaternionic pseudo-Hermitian density matrices and then we derive a necessary and sufficient
condition for the η-unitarity of the time-evolution associated with an η-pseudoanti-Hermitian
quaternionic Hamiltonian. In section 3 we restrict ourselves to consider positive operators
η only, and define η-quasistationary quaternionic Hamiltonians. The dynamics ruled by
such Hamiltonians are then investigated and explicitly written down, together with their
complex projections which constitute stochastic maps in the space of the η-quasi-Hermitian
complex density matrices. Such results are illustrated by an example in section 4. Finally,
section 5 contains some concluding remarks about the uniqueness of the metric operator and
the restrictions imposed on the eigenvectors of the Hamiltonian H in the quasistationary
case. Moreover, a hint is given with regard to the construction of the full class of η-
quasistationary quaternionic dynamics (hence, of the stochastic maps) associated with a generic
time-dependent anti-Hermitian quaternionic operator.

2. Pseudoanti-Hermitian quaternionic Hamiltonian dynamics

In this section, we will introduce the notion of the quaternionic pseudo-Hermitian density
matrix and a corresponding Liouville–von Neumann-type equation will be derived.

Denoting by O‡ the adjoint of an operator O with respect to the pseudo-inner product

(·,·)η = (·, η·) (1)

(where (·,·) represents the standard quaternionic inner product in the space Qn), we have

O‡ = η−1O†η, (2)

so that for any η-pseudo-Hermitian operator, i.e. satisfying the relation

ηOη−1 = O†, (3)

one has O = O‡.
If O is η-pseudo-Hermitian, equation (3) immediately implies that ηO is Hermitian, so

that the expectation value of O in the state |ψ〉 with respect to the pseudo-inner product (1)
can be obtained:

〈ψ | ηO |ψ〉 = Re Tr(|ψ〉〈ψ |ηO) = Re Tr(ρ̃O), (4)

where ρ̃ = |ψ〉〈ψ |η.
More generally, if ρ denotes a generic quaternionic density (hence Hermitian and positive)

matrix, we can associate with it a generalized density matrix ρ̃ (up to a normalization factor
N) by means of a one-to-one mapping in the following way:

ρ̃ = 1

N
ρη (5)

(where N = |Re Tr ρη| if Re Tr ρη �= 0, otherwise N = 1) and obtain 〈O〉η = Re Tr(ρ̃O).

Note that ρ̃ is η-pseudo-Hermitian:

ρ̃† = 1

N
ηρ = ηρ̃η−1.

As in the Hermitian case [5–8], equation (4) immediately implies that the expectation value
of an η-pseudo-Hermitian operator O on the generalized state ρ̃ depends on the quaternionic
parts of O and ρ̃, only if both the operator and the generalized state are represented by
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genuine quaternionic matrices. Hence, if an η-pseudo-Hermitian operator O is described by a
complex matrix, its expectation value does not depend on the quaternionic part jρ̃β of the state
ρ̃ = ρ̃α + jρ̃β .

It was shown that whenever the quaternionic Hamiltonian H of a quantum system is
η-pseudoanti-Hermitian, i.e.

ηHη−1 = −H †, (6)

where η = η†, the pseudo-inner product (1) is invariant under the time translation generated
by H provided that η does not depend on t [9]:

〈ψ(t)|η|ψ(t)〉 = 〈ψ(0)|η|ψ(0)〉. (7)

Denoting by V (t) the evolution operator

|ψ(t)〉 = V (t)|ψ(0)〉, (8)

equation (7) immediately implies

V †ηV = η, (9)

i.e. V is η-unitary. Whenever H is time-independent, η-unitarity of V is quite apparent, owing
to its explicit form V (t) = e−Ht (� = 1) and invoking η-pseudoanti-Hermiticity of H.

Moreover, from

ρ(t) = Vρ(0)V † (10)

by easy calculations, we obtain for a generalized quaternionic density matrix ρ̃

ρ̃ (t) = V (t)ρ̃(0)V (t)−1 (11)

(where the invertibility of V immediately follows from the invertibility of η in equation (9)). In
conclusion, η-unitarity of the time-evolution is a consequence of the η-pseudoanti-Hermiticity
of H.

Conversely, let us assume unitarity of the time-evolution with respect to a (possibly
time-dependent) η-inner product:

〈ψ(0)|η(0)|φ(0)〉 = 〈ψ(t)|η(t)|φ(t)〉.
Then, this condition is equivalent to

η(0) = V †(t)η(t)V (t).

Differentiating both sides of the preceding equation we immediately get(
d

dt
η(t)

)
η−1(t) = H †(t) + η(t)H(t)η(t)−1, (12)

where

H(t) = −
(

d

dt
V (t)

)
V −1(t). (13)

Equation (12) shows that H(t) is η-pseudoanti-Hermitian if and only if η is time-independent.
In this case, the time-evolution of ρ̃(t) is described at finite level by equation (11) and at
infinitesimal level by the usual Liouville–von Neumann equation:

d

dt
ρ̃ (t) = −[H(t), ρ̃]. (14)

From equation (11), the conservation of the η-pseudo-norm immediately follows

Re Tr ρ̃(t) = Re Tr ρ̃(0).
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From equations (11), (9) and the η-pseudo-Hermiticity of ρ̃(0), we immediately get

ηρ̃ (t) η−1 = ηV (t)ρ̃(0)V −1(t)η−1 = V †−1(t)ηρ̃(0)η−1V †(t) = ρ̃† (t) ,

i.e. ρ̃ (t) is η-pseudo-Hermitian.

3. Quasistationary quaternionic Hamiltonian dynamics and their complex projections

In this section, we restrict ourselves to consider η-pseudoanti-Hermitian operators associated
with a positive metric operator η [14]. While in general the spectrum of an η-pseudoanti-
Hermitian operator H can be always assumed to be complex (by suitably rephasing the element
of the biorthonormal basis associated with it), in such a special case the spectrum of H is pure
imaginary and the Hamiltonian is called quasianti-Hermitian [9]. Hence quasianti-Hermitian
Hamiltonians H play in the quaternionic case the role of the quasi-Hermitian ones in complex
quantum mechanics.

Let us then consider the space of quaternionic quasi-Hermitian density matrices, that is the
subclass of the η-pseudo-Hermitian density matrices with a positive η. Thus, an (Hermitian)
operator T exists such that η = T 2, and the η-pseudo-Hermitian density matrices are positive
definite; indeed, putting η = T 2 into equation (5), from the positivity of ρ we immediately
obtain T ρ̃T −1 = 1

N
TρT = 1

N
TρT † � 0 [13].

Then, the inner product (1) we introduced in the Hilbert space is positive, so that all the
usual requirements for a proper quantum measurement theory can be maintained [2, 14–16].
Hence, according to the discussion in section 2, the η-unitarity of the time-evolution implies
that a time-dependent quaternionic Hamiltonian operator H(t) defines a consistent unitary
quaternionic quantum system if and only if H(t) is η-pseudoanti-Hermitian for a time-
independent positive η operator. We will call such a Hamiltonian η-quasistationary [11].

When one considers η-quasistationary quaternionic dynamics, any η-unitary operator
V (t) can be decomposed as follows:

V (t) = T −1U(t)T , (15)

where U †U = 1.
In fact, by using equation (9) and imposing unitarity, we immediately get

T −1V †T T V T −1 = 1.

Recalling that η is time-independent, we immediately obtain from equations (15), (13)

H(t) = T −1H(t)T , (16)

where H(t) = −(
d
dt

U(t)
)
U †(t) is a quaternionic anti-Hermitian operator.

Let us denote by M(Q) and M(C) the space of n×m quaternionic and complex matrices,
respectively, and let M = Mα + jMβ ∈ M(Q). We define the complex projection

P : M(Q) → M(C)

by the relation

P [M] = 1
2 [M − iMi] = Mα. (17)

In order to discuss the complex projection of quaternionic η-quasistationary dynamics,
we recall the following properties [10]:

(i) the complex projection ρ̃α of an η-quasi-Hermitian quaternionic matrix ρ̃ = ρ̃α + jρ̃β

is η-quasi-Hermitian if and only if the entries of η are complex;
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(ii) the complex projection ρ̃α of an η-quasi-Hermitian quaternionic matrix ρ̃ = ρ̃α + jρ̃β

with a complex positive η, is positive and Re Tr ρ̃α = 1.

We sketch here the proof of property (ii). By property (i) it is ρ̃α = 1
N

ραη. Since η = T 2,
from the positivity of ρα we immediately obtain

T ρ̃αT −1 = 1

N
TραT † � 0,

hence ρ̃α � 0. Furthermore, trivially, Re Tr ρ̃α = Re Tr ρ̃ = 1.
Now, let us consider a dynamics ruled by an η-quasistationary quaternionic Hamiltonian.

Equation (11) shows that this dynamics represent a mapping into the set of η-quasi-Hermitian
quaternionic density matrices; moreover, if η is complex and positive, properties (i) and (ii)
ensure that the complex projection ρ̃α of ρ̃ is a complex η-quasi-Hermitian density matrix for
any ρ̃. Hence, we can conclude that the complex projection of a η-quasistationary quaternionic
Hamiltonian dynamics (with η complex positive) is a complex stochastic dynamics in the space
of η-quasi-Hermitian complex density matrices.

The explicit form of such dynamics can be obtained from equations (9)–(11) decomposing
V in terms of its complex parts Vα and Vβ : V = Vα + jVβ . Indeed by equation (10) one has

ρα(0) → ρα(t) = Vαρα(0)V †
α + V ∗

β ρ∗
α(0)V T

β + Vαρ∗
β(0)V T

β − V ∗
β ρβ(0)V †

α ,

which is a complex positive map in the space of Hermitian density matrices ρα (∗ and T in
superscript denote the usual complex conjugation and transposition, respectively). It follows
that

ρ̃α(t) = 1

N

(
Vαρα(0)V †

α + V ∗
β ρ∗

α(0)V T
β + Vαρ∗

β(0)V T
β − V ∗

β ρβ(0)V †
α

)
η. (18)

Equation (18) can be rewritten in terms of ρ̃α(0) and ρ̃β(0) putting V −1 = Wα + jWβ and
using the relations V †

αη = ηWα,−V T
β η = η∗Wβ (see equation (9))

ρ̃α(t) = Vαρ̃α(0)Wα − V ∗
β ρ̃∗

α(0)Wβ − Vαρ̃∗
β(0)Wβ − V ∗

β ρ̃β(0)Wα.

At an infinitesimal level the previous equation get

d

dt
ρ̃α = −[Hα, ρ̃α] + H ∗

β ρ̃β − ρ̃∗
βHβ, (19)

where the symplectic decomposition of H has been used.
It is worthwhile to stress that, unlike what happens whenever H is time-independent (in

such case a one-parameter semigroup dynamics can always be associated with H [10]), in
the general case we considered here the evolution operator does not obey a semigroup law,
as the example in the following section will show explicitly. Other interesting features of
quasistationarity condition will be examined in section 5.

4. An example

Let us first observe that the most general two-dimensional complex positive η operator is given
by

η = T 2 =
(

x z

z∗ y

) (
x z

z∗ y

)
=

(
x2 + |z|2 (x + y)z

(x + y)z∗ y2 + |z|2
)

, (20)

where x, y ∈ R, z ∈ C and xy �= |z|2 and

T −1 = 1

xy − |z|2
(

y −z

−z∗ x

)
.
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The complex dynamical map we will study is obtained as the complex projection of a
deformation of the quaternionic unitary map,

U(t) =
(√

1 − (sin 2t)4 + j e−iθ (sin 2t)2 0
0 1

)
, θ ∈ R, (21)

to which corresponds the anti-Hermitian time-dependent Hamiltonian

H(t) = −
(

d

dt
U(t)

)
U †(t) =

(
j −4 e−iθ sin 2t cos 2t

| cos 2t |
√

1+(sin 2t)2
0

0 0

)
. (22)

We extensively studied such Hamiltonian [8], which generalizes to the quaternionic case a
complex stochastic dynamics, arising in some decoherence modeling schemes [12].

From the previous two equations and equations (16), (15), we get

H(t) = T −1H(t)T = j
−4 e−iθ sin 2t cos 2t

(xy − |z|2)| cos 2t |
√

1 + (sin 2t)2

(
yx yz

−zx −z2

)
(23)

and

V (t) = T −1U(t)T = 1

xy − |z|2
(

yxq − |z|2 y(q − 1)z

−z∗(q − 1)x −z∗qz + xy

)
, (24)

where q =
√

1 − (sin 2t)4 + j e−iθ (sin 2t)2.
Let the initial ‘pure’ state be

ρ̃(0) = 1

2

(
1 0
0 1

)
+

1

2(xy − |z|2) j

(−(x + y)z∗ e−iθ −(|z|2 + y2) e−iθ

(|z|2 + x2) e−iθ (x + y)z e−iθ

)
, (25)

according to equation (11) the final state reads

ρ̃(t) = 1

2

(
1 0
0 1

)
+

(sin 2t)2

2(xy − |z|2)
(

yz∗ − xz y2 − z2

(x2 − z∗2) −yz∗ + xz

)
+ j

e−iθ
√

1 − (sin 2t)4

2(xy − |z|2)
(−z∗(x + y) −|z|2 − y2

|z|2 + x2 z(x + y)

)
. (26)

The complex projection stochastic dynamics is given by

1

2

(
1 0
0 1

)
→ 1

2

(
1 0
0 1

)
+

(sin 2t)2

2(xy − |z|2)
(

yz∗ − xz y2 − z2

(x2 − z∗2) −yz∗ + xz

)
.

Note that the semigroup composition law does not hold. In fact, by a direct computation
it is easy to verify that

P [V (t)ρ̃(0)V −1(t)] �= P [V (t − t ′)V (t ′)ρ̃(0)V −1(t ′)V −1(t − t ′)],

indeed,

P [(V (t)ρ̃(0)V −1(t))21] = (sin 2t)2

(where, as usual, Mij denotes the ith row, j th column entry of a matrix M), while

P [(V (t − t ′)V (t ′)ρ̃(0)V −1(t ′)V −1(t − t ′))21]

= (cos 2(t − t ′))2(sin 2t ′)2 − [(1 − (cos 2(t − t ′))4)(1 − (sin 2t ′)4)]
1
2 .
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5. Concluding remarks

Let a Hermitian nonsingular quaternionic operator η be given. Then, the more general η-
pseudoanti-Hermitian quaternionic Hamiltonian H can be written in the following way [10]:

H = Fη, (27)

where F † = −F .
This peculiarity can be useful to obtain the full class of η-quasistationary quaternionic

dynamics. In fact, for any time-dependent anti-Hermitian quaternionic operator F(t), we can
construct a corresponding anti-Hermitian operator H(t) = η

1
2 F(t)η

1
2 , and from equation (16)

we can state that

H(t) = η− 1
2 H(t)η

1
2 (28)

is a η-quasistationary Hamiltonian, and construct the stochastic (complex) map associated with
it, by the methods used in the example above. Conversely, let a η-quasistationary quaternionic
dynamics be given, then, a time-dependent anti-Hermitian operator F(t) can be associated
with it.

We conclude this paper by analyzing some interesting features of quasistationarity
condition. Such features were already exploited in the complex case [11]; we will show
now that the same properties hold in the quaternionic case, generalizing the Mostafazadeh
approach.

First of all, by a known theorem, when a set of η-quasi-Hermitian (complex) operators
is irreducible, then η is uniquely determined (up to a multiplicative constant) [15], and an
analogous result was already proven to hold also in quaternionic quantum mechanics [14].
Now, all the elements of the infinite set S = (H0,H1,H2, . . .), where Hn := dn

dtn
H(t)|t=0 are

η-quasianti-Hermitian, and assuming that S includes an irreducible subset (which is generally
true) we deduce unicity of the metric operator η.

In the second place, quasistationarity property imposes severe restrictions on the
eigenvectors of H.

In fact, expressing η in terms of the biorthonormal basis {ψn, φn} associated with H, we
have [11, 14]

η =
∑

n

|φn〉〈φn|.

Differentiating the above equation, and taking into account biorthonormality, we easily
obtain

Amk(t) = −A
Q
km(t),

where Q in superscript denotes quaternionic conjugation and

Amk(t) := −〈φm| d

dt
|ψk〉.

We conclude that the matrix A is anti-Hermitian, and its diagonal elements are pure
imaginary, so that all the features of the complex case hold unchanged in the quaternionic one.

In particular, recalling the Schrödinger equation in quaternionic quantum mechanics
(h̄ = 1) [18]

d

dt
|ψn〉 = −H |ψn〉 = −|ψn〉iEn,

we have

Amk(t) = iEkδmk.
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